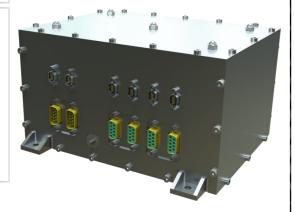
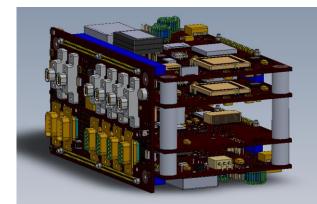
DPU – Data Processing Unit

AMDL S.r.l. – www.amdl.biz


Our own DPU introduces, for the first time in a flight ECSS design, the outstanding Aeroflex dual Leon 3FT core GR712RC part (ITAR FREE*), just made available and qualified for the space market

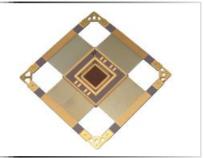
The processor natively provides up to 6 complete Spacewire cores each plus a large number of standard I/F protocols.

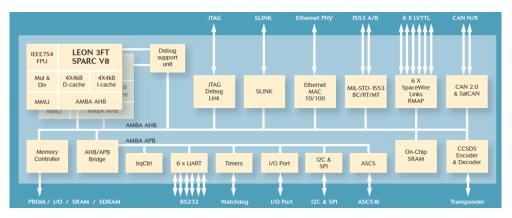
In our configuration a stack of dual processors boards present in each active set of DPU (Main or Redundant) allow to extend up to 12 SpaceWire interfaces and to gain a double computational capability. The configuration foresees as well the full doubling of the stack to guarantee a complete cold redundancy of the unit.

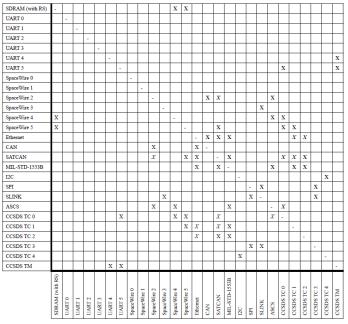

Dual-Core LEON 3FT SPARK V8 32-bit

New product line Main / Ancillary by configuration switch and the master I/F board (on the right)

The complete board stack. This model optimizes thermal balancing and structural and eliminate completely the need of any internal harness


*ITAR: International Traffic in Arms Regulations is a set of United States government regulations that control the export and import of defenserelated articles and services on the United States Munitions List (USML)

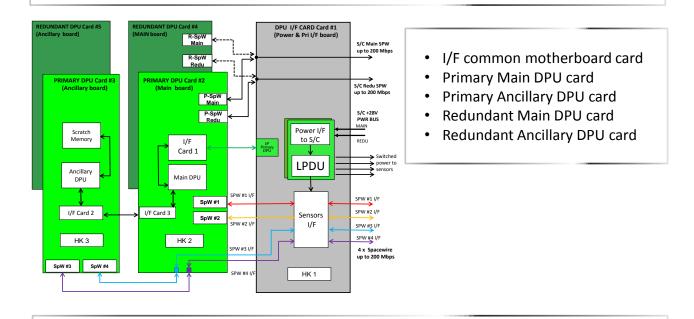

See more at http://pmddtc.state.gov/regulations_laws/itar_official.html



The CPU core

Core LEON 3FT SPARC[™] V8 32-Bit Microprocessor GR712RC Dual-Core LEON 3FT Microprocessor Designed for operation in harsh environments Fault Tolerant architecture Guaranteed radiation performance Real-time multiprocessing support

High computational capability solution


In order to have a more flexible product CPU clock can be scaled up to 100MHz frequency or 200MIPS peak.

Moreover a switches array allows to selected different standard of I/Fs to connect the system to other systems such us LAN, 1553 etc.

Images are courtesy of Aeroflex GR712RC Brochure

The DPU design supports a cold redundancy DPU design and has been developed on four standard 100x160mm² euro cards and a 90x160 mm² motherboard card

This device is an implementation of the dual-core LEON3FT SPARC V8 processor using RadSafeTM technology. Each processor core includes a SPARC Reference Memory Management Unit (SRMMU) and an IEEE-754 compliant double-precision FPU for floating-point operations. It can be utilized in symmetric or asymmetric multiprocessing mode. The GR712RC architecture is centred around the AMBA Advanced High-speed Bus (AHB), to which the two LEON3-FT processors and other high-bandwidth units are connected. Low-bandwidth units are connected to the AMBA Advanced Peripheral Bus (APB) which is accessed through an AHB to APB bridge. The part is provided in a 240-pin, 0.5 mm pitch high-reliability ceramic quad flat package (CQFP). Further important resources have been housed on the board apart the 28V DC-DC converter :

- 20 Megabit (512K x 40-Bit) EEPROM, available both on Main and Ancillary cards.
- 512k x 40, Rad Hard Low Power CMOS SRAM 15 ns/3.3V available both on Main and Ancillary cards.
- 3 Gb 128Mx24SDRAM based scratch memory +2 Gb 128Mx16 SDRAM based scratch memory , available on Ancillary cards.

The DPU components part list is ESA/SCC qualified

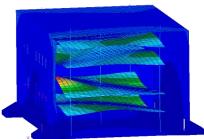
PART TYPE	QUALITY SCREENING LEVEL
Microcircuits	ESA/SCC Class B MIL-PRF-38535 Class V
Hybrids	ESA-PSS-608 Class B: MIL-PRF Class K (US manufacturers only)
Transistors / Diodes / Optos	ESA / SCC Class B MIL-PRF-19500 Class S
Critical Passive Components (Crystals, relays, filters, CCD, Connector, Cable)	ESA / SSC Class B
Passive Components	ESA / SSC Class C MIL failure rate R or B

100 Krad radiation tolerant

DPU mass budget

DPU Electronics Box					
ITEM	MASS [g]	Contingency 20% [g] Mass incl. Co			
	524,39	629,27			
DPU Electronics Cards + locking screws + bearings					
	1202,34 240,47				
TOT DPU without cont. [g]			1726,73		
Cont 20% [g]			345,35		
TOT DPU incl. Cont.	2072				

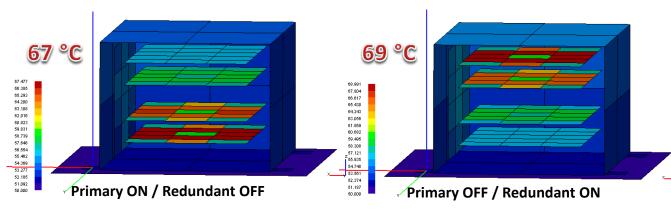
DPU power budget


ITEM	CBE POWER
Total DPU Boards (Main + Redu + I/F)	4382 mW
DC-DC (73% eff) heat	1621 mW
Total DPU	6003 mW

DPU mechanical and thermal analysis

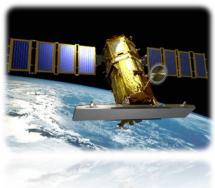
Mode	Freq (Hz)	Mx (%)	My (%)	Mz (%)	lxx (%)	lyy (%)	Izz (%)
1	184,03	-	52,5%	-	27,3%	-	27,5%
2	259,94	-	-	37,2%	19,3%	14,8%	-
4	287,33	43,8%	-	-	-	11,4%	23,5%
5	287,79	8,1%	-	-	-	2,1%	4,2%
7	315,73	17,8%	-	-	-	2,5%	-
10	342,15	-	5,0%	2,0%	-	-	2,7%
16	373,94	-	-	5,0%	3,7%	2,5%	-
18	380,31	-	-	4,3%	3,2%	1,2%	-
19	388,04	-	-	8,9%	6,2%	3,2%	-
20	395,28	-	-	3,3%	2,6%	1,9%	-
21	430,71	-	4,8%	5,1%	2,7%	1,9%	3,0%
36	567,90	-	4,4%	1,5%	1,5%	1,8%	-
Total at	2000 Hz	85,1%	98,1%	84,3%	97,7%	75,5%	98,2%

Modal analysis


Sine analysis

		-		-	
	ld.	Material	s _{MAX} (MPa)	MOS _{Ultimate}	MOS _{Yield}
	DPU Box	Al 6082-T681	24.80	4.95	6.74
Χ	PCBs	Polyimide	3.41	35.66	-
	Bars	AISI 316	73.50	2.74	1.61
	ld.	Material	s _{MAX} (MPa)	MOS _{Ultimate}	MOS _{Yield}
	DPU Box	Al 6082-T681	19.60	6.53	8.80
Υ	PCBs	Polyimide	6.78	17.44	-
_	Bars	AISI 316	48.20	4.71	2.98
	ld.	Material	s _{MAX} (MPa)	MOS _{Ultimate}	MOS _{Yield}
_	DPU Box	Al 6082-T681	64.10	1.30	2.00
Ζ	PCBs	Polyimide	20.50	5.10	-
	Bars	AISI 316	22.00	11.50	7.73

Mode 4


Random analysis

Id.	Material	s _{MAX} (MPa)	MOS _{Ultimate}	MOS _{Yield}
DPU Box	Al 6082-T681	7.94	17.58	23.18
PCBs	Polyimide	4.72	25.48	-
Bars	AISI 316	20.70	12.29	8.28
Id.	Material	s _{MAX} (MPa)	MOS _{Ultimate}	MOS _{Yield}
DPU Box	Al 6082-T681	8.82	15.72	20.77
PCBs	Polyimide	5.58	21.40	-
Bars	AISI 316	21.80	11.61	7.81
Id.	Material	s _{MAX} (MPa)	MOS _{Ultimate}	MOS _{Yield}
DPU Box	Al 6082-T681	20.60	6.16	8.32
PCBs	Polyimide	6.51	18.20	-
Bars	AISI 316	5.50	49.00	33.91

Application fields

Data compression for imaging sensors

<u>High precision</u> calculations: IEEE-754 compliant double-precision FPU for floating-point operations.

Multi sensors support: 6 or more SpaceWire links

Hardware/software <u>high reliability</u> and <u>high</u> <u>performance</u> calculations for scientific satellites

High volume data management

DPU - Data Processing Unit - version 1.2

DPU software customizations

The DPU can offer customized real-time operative system and on board massive data compression such:

- SemiLog compression
- Hartmann Quad Tree
- Rice
- JPEG and JPEG-2000
- ESA CCSDS 122.0-B-1 compression codes

The Consultative Committee for Space Data Systems

Contact: AMDL s.r.l. amdlspace@gmail.com www.amdl.biz

